Learning Dispatching Rules for Scheduling: A Synergistic View Comprising Decision Trees, Tabu Search and Simulation
نویسندگان
چکیده
A promising approach for an effective shop scheduling that synergizes the benefits of the combinatorial optimization, supervised learning and discrete-event simulation is presented. Though dispatching rules are in widely used by shop scheduling practitioners, only ordinary performance rules are known; hence, dynamic generation of dispatching rules is desired to make them more effective in changing shop conditions. Meta-heuristics are able to perform quite well and carry more knowledge of the problem domain, however at the cost of prohibitive computational effort in real-time. The primary purpose of this research lies in an offline extraction of this domain knowledge using decision trees to generate simple if-then rules that subsequently act as dispatching rules for scheduling in an online manner. We used similarity index to identify parametric and structural similarity in problem instances in order to implicitly support the learning algorithm for effective rule generation and quality index for relative ranking of the dispatching decisions. Maximum lateness is used as the scheduling objective in a job shop scheduling environment.
منابع مشابه
Learning dispatching rules via an association rule mining approach
This thesis proposes a new idea using association rule mining-based approach for discovering dispatching rules in production data. Decision trees have previously been used for the same purpose of finding dispatching rules. However, the nature of the decision tree as a classification method may cause incomplete discovery of dispatching rules, which can be complemented by association rule mining ...
متن کاملA Tabu Search Method for a New Bi-Objective Open Shop Scheduling Problem by a Fuzzy Multi-Objective Decision Making Approach (RESEARCH NOTE)
This paper proposes a novel, bi-objective mixed-integer mathematical programming for an open shop scheduling problem (OSSP) that minimizes the mean tardiness and the mean completion time. To obtain the efficient (Pareto-optimal) solutions, a fuzzy multi-objective decision making (fuzzy MODM) approach is applied. By the use of this approach, the related auxiliary single objective formulation can...
متن کاملNew scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times
In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent se...
متن کاملDiscovering Dispatching Rules for Job Shop Scheduling Problem through Data Mining
A data mining based approach to discover previously unknown priority dispatching rules for job shop scheduling problem is presented. This approach is based upon seeking the knowledge that is assumed to be embedded in the efficient solutions provided by the optimization module built using tabu search. The objective is to discover the scheduling concepts using data mining and hence to obtain a ru...
متن کاملEvaluation of Bi-objective Scheduling Problems by FDH, Distance and Triangle Methods
In this paper, two methods named distance and triangle methods are extended to evaluate the quality of approximation of the Pareto set from solving bi-objective problems. In order to use evaluation methods, a bi-objective problem is needed to define. It is considered the problem of scheduling jobs in a hybrid flow shop environment with sequence-dependent setup times and the objectives of minimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers
دوره 5 شماره
صفحات -
تاریخ انتشار 2016